Home> News> How Magnets Work
August 29, 2023

How Magnets Work

You probably know that magnets attract specific metals and they have north and south poles. Opposite poles attract each other while like poles repel each other. Magnetic and electrical fields are related, and magnetism, along with gravity and strong and weak atomic forces, is one of the four fundamental forces in the universe.

But none of those facts answers the most basic question: What exactly makes a magnet stick to certain metals? Or why don't they stick to other metals? Why do they attract or repel each other, depending on their positioning? And what makes Neodymium Magnets so much stronger than the ceramic magnets we played with as children?

To understand the answers to these questions, it helps to have a basic definition of a magnet. Magnets are objects that produce magnetic fields and attract metals like iron, nickel and cobalt. The magnetic field's lines of force exit the magnet from its north pole and enter its south pole. Permanent or hard magnets create their own magnetic field all the time. Temporary or soft magnets produce magnetic fields while in the presence of a magnetic field and for a short while after exiting the field. Electromagnets produce magnetic fields only when electricity travels through their wire coils.

Because electrons and protons are tiny magnets, all materials have some sort of magnetic property. In most materials, however, the way electrons spin in opposite directions cancels out an atom's magnetic properties. Metals are the most common choices to manufacture magnets. Although some are made from simple metals, combinations of metals - called alloys - produce magnets of different strengths. For example:

  • Ferrites or ceramic magnets: These are like those used in refrigerator magnets and elementary-school science experiments. They contain iron oxide and other metals in a ceramic composite. A ceramic magnet known as lodestone, or magnetite, was the first magnetic material discovered and occurs naturally. Even though the ceramic magnet has been around for so long, they weren't commercially produced until 1952. Although they're common and keep their magnetism, they tend to have a weaker magnetic field (known as the energy product) than other types of magnets.
  • Alnico magnets: These were developed in the 1930s and are made from aluminum, nickel and cobalt. They're stronger than ceramic magnets, but not as strong as the ones that incorporate a class of elements known as rare-earth metals.
  • Neodymium magnets: These contain iron, boron and the rare-earth element neodymium, and as of this writing, they are the strongest commercially available magnets. They first appeared in the 1980s after scientists at the General Motors Research Laboratories and the Sumitomo Special Metals Company published their research.
  • Samarium cobalt magnets: These were developed by scientists at the Dayton University Research University in the 1960s, and combine cobalt with the rare-earth element samarium. In the past few years, scientists have also discovered magnetic polymers, or plastic magnets. Some of these are flexible and moldable. However, some work only at extremely low temperatures, and others pick up only very lightweight materials, like iron filings.

Many of today's electronic devices require magnets to function. This reliance on magnets is relatively recent, primarily because most modern devices require magnets that are stronger than the ones found in nature. Lodestone, a form of magnetite, is the strongest naturally occurring magnet. It can attract small objects, like paper clips and staples.

By the 12th century, people had discovered that they could use lodestone to magnetize pieces of iron, creating a compass. Repeatedly rubbing lodestone along an iron needle in one direction magnetized the needle. It would then align itself in a north-south direction when suspended. Eventually, scientist William Gilbert explained that this north-south alignment of magnetized needles was due to Earth behaving like an enormous magnet with north and south poles.

A compass needle isn't nearly as strong as many of the permanent magnets used today. But the physical process that magnetizes compass needles and chunks of neodymium alloy is essentially the same. It relies on microscopic regions known as magnetic domains, which are part of the physical structure of ferromagnetic materials, like iron, cobalt and nickel. Each domain is essentially a tiny, self-contained magnet with a north and south pole. In an unmagnetized ferromagnetic material, each domain's north pole points in a random direction. Magnetic domains that are oriented in opposite directions cancel one another out, so the material does not produce a net magnetic field.

In magnets, on the other hand, most or all the magnetic domains point in the same direction. Rather than canceling one another out, the microscopic magnetic fields combine to create one large magnetic field. The more domains point in the same direction, the stronger the overall field. Each domain's magnetic field extends from its north pole into the south pole of the domain ahead of it.

This explains why breaking a magnet in half creates two smaller magnets with north and south poles. It also explains why opposite poles attract - the field lines leave the north pole of one magnet and naturally enter the south pole of another, essentially creating one larger magnet. Like poles repel each other because their lines of force are traveling in opposite directions, clashing with each other rather than moving together.

Share to:

LET'S GET IN TOUCH

Dongguan Zhenglong Magnet Co., Ltd. is a high-tech private enterprise integrating production, sales, research and development.Our company mainly produces and operates neodymium iron boron magnets, ferrite, ferrite, and rubber magnets. N30, N33, N35, N38, N40, N42, N45, N48, N50, as well as...
Newsletter
Address
Building 1, Huali Industrial Park, No. 11, Dongxing Road, Wangniudun, Dongguan, Dongguan, Guangdong China

Copyright © 2024 Dongguan Zhenglong Magnet Co., Ltd All rights reserved. Privacy Policy

Copyright © 2024 Dongguan Zhenglong Magnet Co., Ltd All rights reserved. Privacy Policy

We will contact you immediately

Fill in more information so that we can get in touch with you faster

Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.

Send